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For fully-developed two-phase flows, maps that correlate experimental and semi-empirical expressions
for flow regimes are widely used. For calculations of the various important two-phase flow parameters,
this in turn requires correlations for various interfacial and wall interaction effects that are flow regime
dependent. For many systems of practical interest, however, the evolution of flow regimes (such as slug
flow in oil–gas pipelines) is of interest because the development lengths are long and flow regimes may
change in regions where pipeline inclination changes due to the terrain. It is shown here that for slow
transients in near-horizontal pipes, the one-dimensional multi-field model, when solved with sufficient
resolution, does not require flow regimes to be specified or flow regime dependent closure relationships.
The formulation predicts the development of flow regimes and various flow parameters without the need
for maps, or the need to change closure relationships. To accomplish this, the model includes four fields,
i.e. continuous and dispersed liquid, continuous and dispersed gas, as well as a set of appropriate closure
relationships from the literature.

For the main application considered here, i.e. slow transients in oil–gas pipelines, order of magnitude
analyses indicate that certain inertial terms in the model are very small and can be neglected in compar-
ison to the others. Advantage is taken of this to simplify both the structure of the mathematical problem
and the solution procedure, which is sufficiently accurate that mass is conserved for each of the four
fields. Furthermore, the calculations require high spatial resolution, so a fast, easily-parallelizable numer-
ical procedure has been applied.

The results indicate that the development of certain flow regimes, including transitions from bubbly to
stratified flow and vice versa, slug flow including slug frequency and length, and the evolution of these
parameters along a pipeline are well predicted by the model when compared to experimental data. As
part of the validation it is also shown that the model predicts, without need to change closure relation-
ships, flow regimes in fully-developed near-horizontal two-phase flows in good agreement with existing
flow regime maps. This suggests that for slow transients in flows for which one-dimensional effects dom-
inate, predictions can be made without requirements for flow regime maps and closure relationships that
depend on them.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Multi-field approaches to modeling two-phase flows have been
around for some time, a version being discussed in Wallis’s text
(Wallis, 1969) as the separate-cylinders model. These models all
require some form of averaging for the usual local instantaneous
conservation equations, which results in the removal of informa-
tion regarding gradients in the vicinity of interfaces and bound-
aries. As a consequence, relationships must be specified to
provide information regarding fluxes of the conserved quantities
at interfaces and boundaries. Early development of the model
ll rights reserved.
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was initiated by problems in the nuclear industry (see Vernier
and Delhaye (1968), Ishii (1975), Delhaye and Achard (1977),
amongst many others). At this time a problem with the model
was that it did not retain its hyperbolic form, even for simple flows,
leading to high wave number instabilities when calculations were
performed by methods that gave rise to low numerical diffusion.
This problem was to some extent resolved, in particular for hori-
zontal stratified flows, by Banerjee and Chan (1980), who were
able to show that the instabilities arose because of incorrect sim-
plifying assumptions regarding the pressure field. They showed
that when gravitational effects on the mean pressure in each phase
were properly accounted for, the onset of linear instabilities
coincided with the Kelvin–Helmholtz predictions. The well-posed-
ness aspects of this problem was also considered more recently by
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Louaked et al. (2003) and Holmas et al. (2008). Viscous effects
could be important for interfacial instabilities in stratified flows,
and were considered by Lin and Hanratty (1986), and Barnea and
Taitel (1993), who also considered nonlinear effects in Barnea
and Taitel (1994).

At about this time, several attempts were made to use the
multifield model to capture flow regime transitions. This was
considered desirable because success in this direction would
allow the use of closure relationships that were independent of
phase distributions (flow regimes) and would simplify calcula-
tion procedures. Amongst these attempts, Kawaji and Banerjee
(1987) used a two-field formulation that included surface
tension to model inverted annular flow during the rewetting
process. They were able to predict the lengths of interfacial
waves that were in agreement with experiments, and use the
model to capture break-up of the liquid core to form droplets.
However, such attempts had limited success and flow regime
maps and closure relationships dependent on flow regimes con-
tinued to be used. An important limitation of such maps is that
they are usually based on local flow parameters which make it
difficult to predict history effects on flow regimes, a problem
that is often important in transients and entrance regimes.

During this early period, several computer codes for analyzing
nuclear loss-of-coolant accidents, based on the multifield model,
were also developed. Amongst these, the French code CATHARE
(Micaelli, 1987) was based on a formulation ensuring that the
characteristics were real for each flow regime – but CATHARE still
continued to use flow regime maps and closure relationships
dependent on them. Several other codes were developed, but these
not only used flow regime maps but also did not ensure that the
mathematical problem was hyperbolic for each flow regime (e.g.,
Hall and Johnson (1982)). It appears that the implicit assumption
was made that the high wave number instabilities that arose when
the characteristics became complex could be damped out numeri-
cally without affecting the quality of the results at the lower wave
numbers – see also Holmas et al. (2008). (As an aside, this approach
is quite similar to what is done for large-eddy simulations with lat-
tice-Boltzmann methods, where it is seen that the pressure noise
arising from the slight compressibility of the model only affects
very high wave numbers around the Kolmogorov cutoff and has lit-
tle effect on the inertial sub range eddies). Be that as it may, a sim-
ilar approach was then followed for transient analysis of oil–gas
pipelines by several groups, e.g. Pauchon et al. (1994) and Bendik-
sen et al. (1991). As mentioned earlier flow regime maps do not
capture flow history effects, and since for near-horizontal gas–li-
quid pipelines the development of slug flows is of particular impor-
tance, these approaches had to incorporate some form of explicit
slug tracking approach – see Nydal and Banerjee (1996) for an
example.

For predominantly one-dimensional flows, much of the
important behavior can perhaps be captured by considering con-
tinuous and dispersed liquid and gas phases i.e. four fields. For
example, slug flow may be thought of as a continuous gas phase,
perhaps containing a few drops with the liquid phase intermit-
tently interspersed and containing entrained gas bubbles. Simi-
larly, a stratified flow might be thought of as separated gas
and liquid phases, each containing a few drops and bubbles,
respectively. Bubbly flow, following this line of thought, would
then consist of a continuous liquid phase containing gas bubbles
with a negligible continuous gas layer (containing droplets). Fur-
thermore, an annular flow would consist of a continuous gas
phase containing liquid droplets and a continuous liquid phase
containing gas bubbles, the proportion of continuous liquid
being insufficient to bridge the duct while remaining continuous.
Obviously, within this one-dimensional context, the distinction
between stratified flows and annular flows would be difficult
to capture as a consequence of the one-dimensional formulation.
It is therefore essential to note that there are many two-phase
flow problems that require a multi-dimensional formulation for
their elucidation, e.g., churn turbulent flow. Having said this
though, there are a significant array of problems of practical
interest that could yield to resolution by one-dimensional ap-
proaches without the necessity for explicit definition of flow
regimes and the closure relationships associated with each of
them. The demarcation of such a group of problems is to some
extent a matter of taste and depends on the accuracy with
which it is desired to predict flow behavior. For the range of
problems of interest in near-horizontal pipelines, many of the
conditions for use of one-dimensional approaches are met, par-
ticularly for relatively slow transients in flow, leaving rapid tran-
sients such as due to pipeline rupture or transition from
horizontal to vertical pipes out of consideration for the moment.

This discussion then leads to this paper, in which we will devel-
op and apply a four field model consisting of continuous liquid
containing dispersed gas bubbles and continuous gas containing li-
quid droplets. The model will incorporate a representative set of
closure relationships which will not be adjusted for changes in
flow configuration (i.e. will remain the same throughout the calcu-
lations – though of course they will be a function of non-dimen-
sional groups such as the Reynolds number and the Eotvos
number, which do not depend on flow regimes but directly on
the fluids properties and the dependent variables that are
calculated).

This approach implicitly propagates interfacial area, but the
area is divided into a continuous component and a dispersed com-
ponent, associated with the bubbles and drops. The rate of the
transport processes that occur at the continuous and dispersed
components are of course very different, and the approach cap-
tures this naturally.

It should be noted in this introductory section that details of
the numerical procedures used are not the subject of this paper,
as there are many possibilities that would achieve the perfor-
mance needed. A key aspect is that it was found to be important
to conserve mass for each of the four fields throughout the cal-
culations in order to make good predictions. It was also found
that the proposed four-field model could be significantly simpli-
fied with regard to the inertial terms for the dispersed phase
momentum formulations, as these were always small when
compared to the others. This results in the model remaining
hyperbolic for the computations, which of course was the key
to enabling the use of fine nodalization. Clearly, fine nodalization
and calculations performed with Courant numbers �1, as was
done here, has the effect of substantially decreasing numerical
diffusion. This in turn would destabilize the calculations by giv-
ing rise to high wave number instabilities, if the model had com-
plex characteristics. As well, easily parallelizable numerical
procedures that enabled the use of fine nodalization for prob-
lems of practical interest were desirable.

The sensitivities of the predictions to the closure relationships
have not been investigated as far as their effect on the validation
of the proposed procedure is concerned. Their precise nature is
important to some extent but the main hypothesis of interest
for this paper is that a set that are not dependent on flow re-
gimes may be used to give reasonable results. After all we are
interested in determining whether the approach will capture
first order effects such as the development of flow regimes, the
determination of which to some extent lies in the eye of the be-
holder. In any case, the computational software has been formu-
lated in a manner such that closure relationships can be readily
changed, so the sensitivity of the illustrative validations con-
tained in this paper, to the closures adopted, may be checked
in the future.
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2. The model

In the multi-field model (Ishii, 1975; Chan and Banerjee, 1980
and many others) separate sets of conservation equations are writ-
ten for each field. In our case, we proceed with four fields, where eL,
el, ed, eG, eg, eb denote the volume fractions of total liquid, of liquid
continuous, of liquid dispersed (droplets), of total gas, of gas con-
tinuous and dispersed (bubbles), respectively. The following rela-
tions hold, since only four fields are independent with the
constraint that they must sum to unity for the total liquid and
gas volume fractions.

eL ¼ el þ ed; eG ¼ eg þ eb; eL þ eG ¼ 1 ð1Þ

For isothermal flow 8 conservation equations are required for the
four fields: 4 continuity equations and 4 momentum equations. In
our formulation two momentum equations are written for the dis-
persed liquid and gas respectively. Two other momentum equations
are written for fields 1 and 2 (sometimes called layers here) – the
former stands for liquid continuous + gas dispersed, and the latter
for gas continuous + liquid dispersed. The corresponding volume
fractions and densities are:

e1 ¼ el þ eb; q1 ¼
elql þ ebqg

el þ eb
; e2 ¼ eg þ ed;

q2 ¼
egqg þ edql

eg þ ed
ð2Þ

The momentum equations are written in terms of the centre of
mass velocity of the two mixture fields,

u1 ¼
cbqgub þ ð1� cbÞqlul

q1
ð3Þ

for field 1, and

u2 ¼
cdqlud þ ð1� cdÞqgug

q2
ð4Þ

for field 2. In Eqs. (3) and (4) cb and cd denote the ratio of the dis-
persed field volume fraction to the mixture volume fraction of the
layer:

cb ¼
eb

eb þ el
; cd ¼

ed

ed þ eg
ð5Þ

With the help of Eq. (2) the momentum equations for fields (or lay-
ers) 1 and 2 are written as:

oðe1q1 u1Þ
ot

þ
o e1q1u2

1

� �
oz

þ o

oz
qgqlcbð1� cbÞe1

q1

� �
u2

s1

� �

¼ �e1
oP
oz
� e1q1g cosð#Þ oh

oz
� e1q1g sinð#Þ þ � sw1Swp1

A

þ siSi

A
�Ueul þUdud þ /eug � /deub ð6Þ

o e2q2u2ð Þ
ot

þ
o e2q2u2

2

� �
oz

þ o

oz
qgqlcdð1� cdÞe2

q2

� �
u2

s2

� �

¼ �e2
oP
oz
� e2q2g cosð#Þ oh

oz
� e2q2g sinð#Þ þ � sw2Swp2

A

� siSi

A
þUeul �Udud � /eug þ /deub ð7Þ

The notation in these equations is: z and t are the spatial and tem-
poral coordinates, subscripts 1, 2, s1, s2 l, g, d, and b denote field 1,
field 2, slip between bubbles and continuous liquid, slip between
droplets and continuous gas, liquid continuous and gas continuous
field, and droplets and bubbles field respectively. e denotes the vol-
ume fraction, u is the velocity, g is the gravity acceleration, P is the
interfacial pressure, h the liquid height, s is the shear stress, q the
density, A is the pipe area, # is the pipe inclination with respect
to the horizontal, Swp1, Swp2and Si denote the perimeter wetted by
layer 1, the perimeter wetted by layer 2, and the interfacial width
respectively. As shown in the Appendix, the last two terms on the
LHS of Eqs. (6) and (7) involving the slip are very small compared
to the other terms on the LHS.

The wall shear stress is typically expressed as:

swk ¼
1
2

fwkqkjukjuk ð8Þ

where fwk denotes the wall friction factor while the subscript k de-
notes the phase in contact with the wall, i.e. ug if it is the gas and ul

if it is the liquid. Similarly, the interfacial shear stress is expressed
as:

si ¼
1
2

fiqg jug � uljðug � ulÞ ð9Þ

The source terms /e, /de, Ue and Ud denote bubble entrainment and
disengagement rates, and droplet entrainment and deposition rates
respectively. The velocities of the dispersed fields (ud – droplet
velocity, and ub –bubble velocity) are calculated from the momen-
tum equations written for the dispersed phase equations. The
momentum equations for the dispersed fields may be written as

oðemqmumÞ
ot

þ
o emqmu2

m

� �
oz

¼ �em
oP
oz
� emqmg sinð#Þ þXeuk

þXdeum þ Fdrag ð10Þ

In this equation, subscript m denotes the dispersed field (i.e. drops
or bubbles), Xe and Xde denote the entrainment and disengagement
rates for the given dispersed field (i.e. droplet entrainment/deposi-
tion for the dispersed liquid field and gas entrainment rate and dis-
engagement, like shedding from the slug tail for bubbles). Fdrag is
the interfacial drag acting on the dispersed field. The order of mag-
nitude of each of the terms on the LHS of Eq. (10), as well as the vir-
tual mass, the Basset force, the lift force and hydraulic head terms
are small in our scenarios of interest compared to each term on
the RHS. This has been validated on the basis of a posteriori evalu-
ations. So Eq. (10) leads to essentially algebraic equations, which do
not alter the characteristics and which remain real.

The mass conservation equations of the four fields (liquid
continuous, liquid dispersed, gas continuous, and gas dispersed)
are:

oðelqlÞ
ot

þ oðelqlulÞ
oz

¼ �Ue þUd ð11Þ

oðedqlÞ
ot

þ oðedqludÞ
oz

¼ Ue �Ud ð12Þ

oðegqgÞ
ot

þ
oðegqgugÞ

oz
¼ �/e þ /de ð13Þ

oðebqgÞ
ot

þ
oðebqgubÞ

oz
¼ /e � /de ð14Þ

The mass conservation equations for the total liquid and gas volume
fractions are obtained by summing Eqs. (11)–(14) respectively:

oðeLqlÞ
ot

þ oðelqlulÞ
oz

þ oðedqludÞ
oz

¼ 0 ð15Þ

oðeGqgÞ
ot

þ
oðegqgugÞ

oz
þ

oðebqgubÞ
oz

¼ 0 ð16Þ

In order to close the set of equations described above, it is necessary
to incorporate the necessary closure relationships for the quantities
on the right hand side of the conservation equations. These include
friction factors for the computation of the shear stresses (swk, si,
sdrag), terms related to mass exchange (e.g. droplet entrainment rate
Ue droplet deposition rate Ud and gas entrainment and disengage-
ment rates /e and /de respectively).
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For purposes of validation, we will determine whether some of
the so-called ‘‘flow regimes” are predicted as part of the results ob-
tained when conducting the calculation. This requires that a set of
criteria be defined as to what constitutes a ‘‘flow regime” for iden-
tification purposes only. These are not needed as part of the calcu-
lation but only as part of the validation procedures proposed here.
Thus they are not shown as part of the section on closure relation-
ships but only in the section on validation of the model.

3. Closure relationships

We summarize here the closure relationships used in this paper.
They are independent of flow regime. The numerical procedures
have been structured such that users may change and/or adjust
the closures. Tables 1–3 report all the empirical closures required
by the model. In particular, Table 1 lists the reference closures
for the wall and interfacial friction factors. This is followed by Table
2 which reports the correlations adopted for rough pipe wall and
summarizes alternative correlations for the wall and interfacial
Table 2
Additional relationships for friction factor

Closure Reference C

Liquid-wall Spedding and Hand (1997) R
R

Liquid-wall Moody (Hall, 1957) R

R

Gas-wall Moody (Hall, 1957) R

R

Gas–liquid Andreussi and Persen (1987) F

F

Gas–liquid Andritsos and Hanratty (1987) e

e

Gas–liquid Cohen and Hanratty (1968) N

Gas–liquid Wallis (1969) N

Table 1
Reference closure relationships for friction factors

Closure Reference Condition Equation

Liquid-wall Taitel and Dukler (1976) Rel < 2100 flw = 16/Rel

Rel P 2100 flw = 0.046[Rel]�0.2

Gas-wall Taitel and Dukler (1976) Reg < 2100 fgw = 16/Reg

Reg P 2100 fgw = 0.046[Reg]�0.2

Gas–liquid Taitel and Dukler (1976) Rei< 2100 fi = 16/Rei

Rei > = 2100 fi = 0.046[Rei]�0.2

Table 3
Other required closures for multi-field model

Closure relationship Reference

Bubble Entrainment Nydal and Andreussi (199

Bubble Disengagement Andreussi et al. (1993a,b)

Droplet entrainment rate Pan and Hanratty (2002)

Droplet deposition rate Pan and Hanratty (2002)

Drag on droplet Alipchenkov et al. (2004)

Droplet diameter Sarkhi and Hanratty (2002

Drag on bubble Tomiyama et al. (1995)

Bubble diameter Andreussi et al. (1999)
friction factors that have been used to test the sensitivity of the
flow regime predictions. Table 3 summarizes the reference clo-
sures used for bubble entrainment and disengagement, droplet
entrainment and deposition, droplet size and bubble size, drag
coefficients for drops and bubbles.

In Table 1 the following nomenclature has been used:

Rel ¼
qkukDk

lk
;Resl ¼

qlUslD
ll

;Rei ¼
qg ug � ul

�� ��D2

lg
ð17Þ

Where k stands for either continuous liquid or gas and Usl denotes
the liquid superficial velocity. The hydraulic diameters are defined
as

D1 ¼
4A1

Swp1
;D2 ¼

4A2

Swp2 þ Si
ð18Þ

In the expression of Andreussi and Persen (1987) the coefficient F is
defined as:

F ¼ ðug � ulÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qg

ql � qg

dA1
dh1

A2

1
g cos#

vuut ð19Þ

where, in Eq. (19) F represents a parameter related to the inviscid
Kelvin-Helmholtz instability.

In Table 3 uwave denotes the wave celerity; rgl denotes the gas–
liquid surface tension; the coefficient K in the bubbles disengage-
ment law is taken as 0.28; the deposition velocity kd is taken to
be 0.1 m/s; the droplets entrainment constant ke is taken to be
7.7e-8. The droplets and bubbles Reynolds numbers and the Eotvos
number are defined as
ondition Equation

el < 2100 flw = 24/Rel

el P 2100 flw = 0.0262[e1ReSl]�0.139

el < 2100 flw = 16/Rel

el P 2100 flw ¼ :001375 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�104 �k
D1
þ 106

Rel


 �
3

r� �
eg < 2100 fgw = 16/Reg

eg P 2100 fgw ¼ :001375 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�104 �k
D2
þ 106

Reg


 �
3

r� �
6 F0 = 0.36 fi = fgw

> F0 = 0.36 fi ¼ fgw 1þ 29:7ðF � 0:36Þ0:67 h1
D


 �0:2
� �

2u2 < UG;crit ¼ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qg ðPatmÞ
qg ðPÞ

r
fi = fgw

2u2 P UG;crit ¼ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qg ðPatmÞ
qg ðPÞ

r
fi ¼ fgw 1þ 15

ffiffiffiffi
h1
D

q
u2e2

UG;crit
� 1


 �� �
one fi = 0.014

one fi = 0.005[1 + 75e1]

Equation

1) /e ¼ qgA 0:076 Si
D ðuwave � ulÞ � 0:15

h i
/de ¼ �qg K 1:18 rgl gðql�qg Þ

q2
l

� �� �0:25

Sið1� elÞ

Ue ¼ 4
pD

ke
rgl

ffiffiffiffiffiffiffiffiffiffiqgql
p

u2
g

ql Aulel
D � 100ll


 �
Ud ¼ 4

D kd
ed
eg

ql

CD ¼ 18:5
Re0:6

d
;2 < Red < 500

CD = 0.44,Red > 500

) dd ¼ 1
U1:1

sg
4:848 pUe D

ql Usg
þ 0:0038

h i
CD ¼max 24

Reb
1þ 0:15 � Re0:687

b


 �
; 8

3
Eo

Eoþ4

h i
db ¼

rgl
1
2flwqlu

2
1

We0
crit 1þ 51:7e1:5

b

� �
;We0

crit ¼ 1:05
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Red ¼
qg jug � udjdd

lg
;Reb ¼

qldbju1 � ubj
ll

; Eo ¼
gðql � qgÞd

2
b

rgl
ð20Þ

with d being the droplet average diameter.
From Table 1 it can be seen that, as a first option, the closure

equations first proposed by Taitel and Dukler (1976) for the wall
and interfacial friction factors under stratified flow conditions have
been adopted. This choice has been widely used in the literature
and appears to be adequate when dealing with low phase veloci-
ties, in the absence of interfacial waves. Table 2 lists the wall fric-
tion factors used in the model in presence of a rough wall. These
correlations are the standard, turbulent flow equations normally
adopted for the computation of frictional losses in single-phase
pipe flow. In the same table, we also list a limited number of cor-
relations proposed in the literature to account for the effect of the
interfacial roughness on the liquid-wall friction factor and on the
interfacial friction factor. In these cases the number of possible
choices is large. The closure equations reported in Table 3 are not
yet well established, mainly because of the lack of extensive data
sets and improvements will require new data. We decided to post-
pone any detailed comparison among the different correlations
and with the experimental measurements, as the main objective
of the present paper is to determine the applicability of the four-
field model with an appropriate set of closure relationships in
the prediction of flow structure development and transition. To
this it may be added that, in general, the in the studies we have
conducted, the effect of the closure equations was quite limited.

4. Numerical procedures, mass error and convergence

The mass conservation equations solved are Eqs. (12) and (14)
for the liquid and gas dispersed fields and Eqs. (15) and (16) for
the total liquid and gas volume fractions. Once these equations
are solved, the volume fractions of the continuous fields can be cal-
culated applying Eq. (1):

el ¼ eL � ed; eg ¼ eG � eb ð21Þ

The pressure equation is derived by combining the mass equations
for the conservation of the total liquid and gas, and dividing by the
respective densities, the derived equation being:

1
ql

oðelqlulÞ
oz

þ oðedqludÞ
oz

� �
þ 1

qg

oðegqgugÞ
oz

þ
oðebqgubÞ

oz

� �

þ eG

qg

oqg

ot
þ eL

ql

oql

ot
¼ 0 ð22Þ

A standard pressure-velocity coupling scheme (Ferziger and Peric,
1999) is the choice adopted to derive a pressure equation from
the global continuity Eq. (22).

The governing equations are numerically discretized on a stag-
gered grid arrangement (Harlow and Welch, 1965) using explicit
discretization scheme in time for all equations but the pressure.
The adoption of the explicit scheme allows easier parallelization.
The time step is limited by the flow Courant number

C ¼ umaxdt
dz

< 1: ð23Þ

In the above equation C, umax, dt and dz denote the Courant number,
the maximum phase velocity, the time step size and the mesh spac-
ing respectively.

Since the set of model equations is hyperbolic, the boundary
conditions have to be prescribed by the characteristics velocity in
and out of the flow.

In summary, the methodology solves the following equations:

1. Momentum equation of layer 1 – Eq. (6) [explicitly integrated].
2. Momentum equation of layer 2 – Eq. (7) [explicitly integrated].
3. Momentum equations for the dispersed phases – Eq. (10)
[explicitly integrated].

4. Continuity equation of liquid dispersed (droplet) field – Eq. (12)
[explicitly integrated].

5. Continuity equation of gas dispersed (bubbles) field – Eq. (14)
[explicitly integrated].

6. Continuity equation of total liquid phase – Eq. (15) [explicitly
integrated].

7. Continuity equation of total gas phase – Eq. (16) [explicitly
integrated].

8. The pressure equation derived Eq. (22) [implicitly integrated].

If inlet conditions are stratified, a small disturbance needs to be
imposed in order to initiate evolution to the appropriate flow con-
figuration. If the flow is truly stratified, then these disturbances die
out to the level of numerical noise in the void fraction fluctuations.
However, if transition to slug or large-wave (annular) flow would
occur, then these fluctuations grow to significant and sustained
amplitude. In discussing the validation of the model it should be
kept in mind that when inlet and initial conditions are stratified
then small amplitude fluctuations are imposed to assist in flow
evolution.

The procedure enforces mass conservation of not only the total
liquid and gas phases, but also that of the corresponding dispersed
fields (gas bubbles and liquid droplets). At any instant in time, the
following equation holds:

Xp¼N

k¼0

_MoutðtpÞ � _MinðtpÞ

 �

dtp ¼ ðMðtNÞ �Mðt0ÞÞ ð24Þ

In the above equation subscript p represents a time step in the
numerical solution. The term in the left hand side of (24) denotes
the difference between the outlet and inlet masses for the field un-
der consideration, while the term in the right hand side represents
the accumulation term.

As an example of mass conservation capabilities of the numer-
ical method, a transient case is considered for illustrative purposes.
Air-water stratified flow is fed into a horizontal line (30 m long
with an internal diameter of 8 cm) at atmospheric pressure. The
superficial velocities of the gas and liquid are of 3 and 0.2 m/s
respectively. With these boundary conditions, stratified flow is ex-
pected based on the normal flow regime maps (Taitel and Dukler,
1976). At a certain time (120 s from the start of the simulation) the
liquid flow rate is ramped up from 0.2 to 0.5 m/s, while the gas
flow rate is kept constant. The increase in liquid velocity should
be enough to lead to hydrodynamic slugging in the line (Taitel
and Dukler, 1976). We now consider the simulation performed
with a mesh spacing of one pipe diameter and a Courant number
of 0.2. The cumulative mass errors for the total liquid and gas
during the transient simulation are displayed in the Fig. 1. Despite
the increase in liquid flow rate, the mass errors for both the
total liquid and gas phases remain low, always <1%. The dispersed
gas field accumulates a mass error totally negligible (less than
E-7 %).

With regards to convergence of the numerical results, consider
the results shown in Fig. 2 for the effect of the mesh size on the
slug frequency for a terrain-induced slugging case occurring in a
V-section operating at high pressure. It is evident that when the
mesh size is reduced to the size of the diameter the numerical pre-
dictions become grid-independent. This effect is due to the dimin-
ished effect of numerical diffusion which, as the grid becomes
coarser, tends to smear out sharp changes in the solution (i.e. it
smoothes out slug fronts and large disturbance waves). Clearly
convergence of the calculations should be checked, but in rough
terms is obtained with mesh spacings of the order of the pipe
diameter as demonstrated by the demanding case considered.



Fig. 2. Slug frequency vs. non-dimensional mesh spacing.

Fig. 1. Cumulative mass errors for total liquid and gas phases.
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5. Validation of the model

5.1. Criteria for identification of flow regimes

The validation will focus on determining the capabilities of
the four-field model with closure relationships independent of
flow regimes on prediction of qualitative changes in phase distri-
bution (i.e. prediction of flow regimes). For these purposes we
require criteria to identify the specific flow regimes noting that
these play no role in the calculation of the closure relationships
utilized. Thus not only are the fully developed flow regimes pre-
dicted but also the evolution of the phase distributions towards
their steady-state configurations. For example, we may start
with conditions along the pipe of dispersed bubbly flow but,
based on steady-state fully-developed flow regime maps, we
know that the inlet flow conditions should result in stratified
flow. Indeed our calculations will show that the dispersed bub-
bly flow will evolve ultimately to a stratified flow. Similarly,
we may start with inlet conditions which for a fully developed
case should lead to slug flow but are considered initially to be
stratified. Our calculations again will show that such initially
stratified flows will develop into slugs with appropriate length
and frequency. Clearly, this requires criteria to identify what is
a slug for the purposes of validation noting that the model and
its solution does not require any such criteria. We therefore list
below the criteria used for identification of the various flow
regimes. The results of course are rather insensitive to the pre-
cise values of the thresholds used in these criteria as flow re-
gimes are a qualitative determination of phase distribution.
Qualitatively we define

� Stratified flow: stratified layers with low void fraction fluctua-
tions (no distinction is made between wavy and smooth
regimes).

� Annular flow: stratified layers with large void fraction fluctua-
tions which do not bridge the pipe.

� Slug flow: stratified layers with large void fraction fluctuations
which do bridge the pipe, causing regions with very thin strati-
fied gas layers.

� Bubbly flow: the pipe is fully bridged with no regions where
there are stratified gas layers that are not very thin.

The term ‘very thin stratified gas layer’ requires more precise
definition for identification purposes. Consider first transition from
a stratified flow to a slug flow. The criteria are rather simple. When
a wave becomes large enough to reach the top of the pipe then a
slug might be thought to form, i.e. the volume fraction of the con-
tinuous gas must become very small. Similarly the change of the
volume fraction of whatever gas remains must also be small. The
exigencies of the numerical procedures require that these volume
fractions for the continuous gas layer be slightly greater than zero,
but of course the precise values chosen should not matter. Thus we
have Deg 6 c1 and eg 6 c2 where c1 and c2 are close to zero, but can
be varied over a range without affecting the results. This is shown
in the following paragraph.

For transition from slug to bubbly flow the slug lengths become
long enough to encompass the whole length of the pipe. Con-
versely, a bubbly flow becomes a slug flow when the bubbles dis-
engage to add to the stratified gas layer (which could contain very
small numbers of liquid droplets) leading eventually to intermit-
tent gas and liquid layer flow.

5.2. Validation for transition from stratified to slug flow

The growth of an interfacial disturbance in stratified flow is
shown in Fig. 3 which indicates the liquid volume fraction and
the gas velocity at different times for a 30 m long horizontal line,
80 mm internal diameter, operating at atmospheric pressure. The
inlet oil (qL = 820, lL = 0.01 Pa � s) and air superficial velocities are
0.3 and 8 m/s. As can be seen from this figure, the interfacial distur-
bance grows along the pipeline and rapidly assumes the typical
shape of a large disturbance wave as observed in laboratory exper-
iments: a sharp front and a slowly decaying tail. Under these flow
conditions the wave grows to the top of the pipe and forms a slug.
Immediately before slug formation the gas velocity reaches a peak
which in one of the snapshots presented is close to 90 m/s. It is
interesting to notice that under these conditions immediately after
slug formation a deep trough is formed in the slug tail. Similar
experimental observations have been reported in the literature
(see for instance, Kadri et al., 2007). Note that all this is predicted
without the requirement of any closure relationships specifically
for slug flow.

This also regards the elongated bubble propagation velocity for
slug flow. In Fig. 4 the correlation based on the experimental obser-
vations made by Bendiksen (1984) are compared with the predic-
tions of the present model. According to Bendiksen (1984), the
bubble propagation velocity can be written as:

uB ¼ C0umix þ u0 ð25Þ

Bendiksen (1984) proposed the following correlation for his
experimental observations:



Table 4
Effect of threshold values c1 and c2 on slug velocity coefficient

C[-] 1.204 1.238 1.316 1.454 1.461 1.415 1.261 1.238

C1 0.1 0.1 0.1 0.1 0.0125 0.025 0.05 0.15
C2 0.05 0.04 0.03 0.02 0.04 0.04 0.04 0.04

Fig. 4. Bubble velocity in a horizontal line (air-water flow at high pressure in a 300 pipe).

Fig. 3. Liquid holdup and gas velocity profiles at different times (hydrodynamic slugging).
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C0 ¼
1:05þ 0:15 sin2

# Fr 6 3:5
1:2 Fr > 3;5

(
ð26Þ

u0 ¼
0:35 sin#þ 0:54 cos#ð Þ

ffiffiffiffiffiffi
gD

p
Fr 6 3:5

0:35
ffiffiffiffiffiffi
gD

p
sin# Fr > 3;5

(
ð27Þ

In Eqs. (26) and (27) the Froude number is defined as

Fr ¼ umixffiffiffiffiffiffi
gD

p ð28Þ

More recent experimental observations (see for instance Nydal et al.,
1992) indicate that the value of the coefficient C0 actually is larger
than 1.2 and is closer to 1.25. Fig. 4 compares the bubble velocity
according to Eqs. (25)–(27) against the predictions of the four field
model using two different values of the criterion thresholdc1. As
can be seen from this figure, a significant change of c1 causes only a
minor change to the gas bubble velocity as would be expected from
the previous discussion. It can also be seen that the present model
reproduces very well the experimental measurements of Bendiksen
(1984) as well as the new data. The main finding here is that no
adjustments to the various closure relationships for the four-field
model are required to achieve this agreement which is also rather
insensitive to the identifications criteria.

The effects of the threshold values c1, c2 on the slug velocity
coefficient C0 defined by Eq. (26) and empirically fitted by Bendik-
sen (1984) with Eqs. (26) and (27) are reported in Table 4. This ta-
ble confirms that the overall effects of the threshold parameters
are modest. For instance, a variation of c1 from 0.0125 to 0.15 only
causes a variation of C0 of less than 20%.

Another interesting example of the effectiveness of the present
model in describing slug flow is the prediction of the slug length.
In the literature there are no established correlations for this



Fig. 5. Comparison between code predictions and experiments for mean slug body
length.

Fig. 7. Air–water theoretical predictions, transition data and predictions.
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parameter or for the slug frequency, which can be related to the slug
length according to the slug unit model of Dukler and Hubbard
(1975). This prevents existing codes, used to predict the main flow
parameters in hydrocarbon transportation lines, from providing a
reliable estimate of the maximum slug length at pipeline exit. The
capability of the present model to predict the slug length is shown
in Fig. 5 where model predictions are compared with the experimen-
tal observations of Nydal et al. (1992). These authors conducted
experiments at atmospheric pressure on horizontal air-water slug
flow in pipes having internal diameters of 5 and 9 cm. Numerical
simulations were performed for a pipe with internal diameter of
5 cm. Three different mixture velocities (10, 15 and 20 m/s) were
considered. For each mixture velocity, two different values of water
superficial velocity (0.6 and 2.4 m/s) were examined (the gas super-
ficial velocity changing accordingly). As can be seen from this figure,
model predictions are good if it is considered that in this case no data
fitting has been performed and no adjustment has been made to the
closure relationships. In Fig. 6 the values of the standard deviation of
the slug length determined by Nydal et al. (1992) are compared with
model predictions and the results obtained again appear to be good
in view of the lack of ‘‘tuning” in our four-field model.

The robustness of the criteria for identifying the slug transition
can also be appreciated by looking at Fig. 7, where the predictions
of the critical height of the liquid layer at the transition to slug flow
for an air-water flow at atmospheric pressure are plotted against
Fig. 6. Comparison between the code predictions and experiments for standard
deviations of mean slug length.
the superficial velocities and compared against the experimental
data of Andritsos et al. (1989) and the theoretical transition bound-
ary according to Hurlburt and Hanratty (2002) for a horizontal pipe
with 9.53 cm of internal diameter. Clearly, the criteria used for
identification, again noting that the closure relationships are not
adjusted, appear to be accurate.

Another example is shown in Fig. 8 which plots, for a gas super-
ficial velocity of 6 m/s, the behaviour of the liquid fractions (the li-
quid height) at a downstream point for two different liquid
superficial velocities. As can be seen, at a liquid velocity of
0.15 m/s no slugs are present, but the gas–liquid interface is cov-
ered with high frequency, low amplitude noise. With a relatively
small change, the liquid velocity goes to 0.2 m/s a well defined
train of low frequency (less than 0.05 s-1) slugs can be observed.

5.3. Transition to annular flow

The model predicts the growth of waves between the liquid and
gas layers which may either lead to slugging or to the generation of
large amplitude waves which do not bridge the pipe and corre-
spond to the onset of annular flow.

As an example Fig. 9 shows the liquid volume fraction (in terms of
liquid height) at a downstream point for two different gas superficial
velocities (20 and 21 m/s) at a liquid superficial velocity of 0.1 m/s in
a horizontal pipe at atmospheric pressure with internal diameter of
9.53 m for a two-phase air-water flow. As can be seen, while the gas–
liquid interface remains flat for the lower gas velocity, when this is
increased, a train of waves generates. This is predicted again keeping
the set of closure relationships unchanged. It is worth noting that the
values of wave frequency and height found are in good agreement
with the experimental observations (see for instance Lioumbas
et al., 2005).

The direct transition between annular and slug flow is shown in
Fig. 10, where it can be seen that for a liquid velocity of 0.5 m/s and
a gas velocity of 26 m/s the stable flow pattern is annular flow.
When the gas velocity is decreased to 17 m/s the stable flow pat-
tern is slug flow.

5.4. Transition to bubbly flow

The transition criterion leading to slug flow formation also al-
lows prediction of the transition to bubbly flows. As discussed
bubbly flow is considered to form when the slug frequency is
so high that all slugs merge together. As an example, a two-
phase flow in a 50 m long pipe with an internal diameter of



Fig. 8. Liquid height trends in a location close to the exit of a horizontal line at Ug = 6 m/s and different liquid flow rates (blue: Ul = 0.15 m/s, red: Ul = 0.2 m/s). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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9 cm at atmospheric pressure is studied with inlet superficial
velocities of 1 m/s and 10 m/s for the gas and the liquid respec-
tively. The inlet is kept separated with a liquid holdup of 0.2 and
the flow is initialized as stratified throughout the line with a
liquid holdup of 0.1. After a few seconds the high liquid veloc-
ity leads to slug generation at such a high frequency that all
bodies merge into a single slug body, as shown in the figure
below. As one can see from Fig. 11, a stratified region still ex-
ists for some time after the slug is first formed. The same
transition can be obtained by changing the inlet boundary con-
ditions, where instead of feeding the gas and liquid as sepa-
Fig. 9. Transition to annular flow in a horizontal pipe for air-water two-phase
rated, a dispersed gas–liquid flow is fed into the pipe at a
mixture velocity of 11 m/s with an inlet bubble voidage of
0.1. Except for the inlet the flow is initialized as stratified,
with a liquid holdup of 0.1. Of course the flow should all
eventually be bubbly. Fig. 12 shows how this comes about
with the inlet boundary condition of dispersed gas–liquid flow
propagating downstream along the line. The model predicts
that after 16 s from the start of the simulation the whole line
is under bubbly flow conditions.

Another interesting numerical exercise was the simulation of a
dispersed bubbly flow at the inlet of the pipe at low mixture
flow with liquid velocity of 0.1 m/s and gas velocities of 20 and 21 m/s.



Fig. 10. Transition between Large Waves and Slug flow at Ul = 0.5 m/s (blue: Ug = 17 m/s, red: Ug = 26 m/s). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

M. Bonizzi et al. / International Journal of Multiphase Flow 35 (2009) 34–46 43
velocity (0.1 m/s). The flow is initialized as dispersed throughout
the pipe. When the simulation starts, the gas starts to disengage
until a stratified flow with a liquid layer containing no bubbles is
eventually obtained, as it is expected at such low velocity from
existing flow pattern maps (Taitel and Dukler, 1976). Fig. 13 shows
the bubbles disengagement as function of time.

5.5. Validation against existing flow regime maps

The flow transitions identified with the present model are
summarized in Fig. 14, which refers to a horizontal, 80 mm ID
Fig. 11. Liquid layer holdup profiles at different times for bubbly flow case with
gas–liquid separated flow fed into the pipe (Ul = 10 m/s, Ug = 1 m/s). the bubble
fraction is given as the right ordinate, while the liquid layer fraction (called the
holdup) is shown in the left.
pipe 30 m long, with air and water flowing at atmospheric con-
ditions. In Fig. 14 present results are compared with the flow
map proposed by Taitel and Dukler (1976), which is known to
provide a good fit to the experimental observations of Mandhane
et al. (1974) and to other published work. The good comparison
between the two different approaches to predict flow regime
transitions shown in the figure indicates not only the validity
of the approach presented here but also the importance and
accuracy of the mechanistic approach to the problem of flow
transitions proposed by Taitel and Dukler (1976) more than 30
years ago.
Fig. 12. Propagation of bubbly flow region at different times for bubbly flow case
with gas–liquid dispersed flow fed into the pipe (Um = 11 m/s, eb = 0.1). The holdup
shown by the dotted line is for the liquid layer, which eventually fills the pipe after
10 s even though the flow was initialized as stratified.



Fig. 13. Bubbles disengagement for dispersed bubbly flow at pipe inlet at low
mixture velocity (Um = 0.1 m/s).
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6. Conclusions

An approach based on a four field model, consisting of contin-
uous and dispersed gas and liquid phases has been discussed in
the context of providing an innovative flow regime independent
formulation for near-horizontal gas–liquid pipeline flows. The
model implicitly evolves interfacial area, conforming with the
physically-based requirement that the area in dispersed form
must be distinguished from the continous area, since the trans-
port processes in each case are very different. Relatively simple
flow regime independent closure relationships have been used
for the dispersed and continuous phase interactions, as the main
point was to determine the validity of the model for first order
Fig. 14. Comparison between code DPR predictions and mechanistic m
effects such as flow structure evolution and transitions, which
are, to some extent, qualitative in any case. We believe that
for the first time, the prediction of several flow regimes has been
shown to arise naturally as a part of the calculation, with no
special flow regime dependent closure relationships being
necessary.

Another finding was that an essential ingredient of the present
approach is the adoption of a fine grid, so the calculations converge
in a mathematical sense. This requires that, for models of this type,
the equation set be hyperbolic, and of course the thatan efficient
numerical scheme be developed, which in our case was based on
a nearly explicit solution of the model equations to allow for easy
parallelization.

It should also be noted that the correct identification of the slug
flow pattern discussed in Section 5.2 represents a particularly
interesting aspect of the model in that the actual choice of the slug
flow identification parameters c1 and c2 has a small effect on pre-
diction of transition and on the main slug flow parameters, such
as slug velocity and slug length.

The model can only capture phenomena that are dominated
by one-dimensional effects and therefore cannot distinguish be-
tween annular flow and stratified flow with large interfacial
waves, as multidimensional effects may be important in forming
the liquid film that wets the whole pipe wall in annular flow.
Similarly multidimensional effects can also be expected to be
important in churn turbulent flow regimes and would be outside
the scope of the proposed model. However, within the scope of
these limitations the model does calculate development of the
various flow regimes for near-horizontal flows and quantitatively
predicts parameters such as slug length and frequency in agree-
ment with data. It is important to note that the solution meth-
ods must conserve mass for each of the fields and be capable
of achieving the performance needed for high resolution to
achieve the results shown here. In future it will be interesting
to determine in more detail the effect of different closure rela-
tionships and whether a similar approach might be useful for
flows in vertical pipelines.
odel of Taitel & Dukler for flow pattern map in a horizontal line.
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Appendix A. Order of magnitude of inertial terms in
momentum conservation equation

The left hand sides of the mixture momentum equations for
layer 1 and 2 (Eqs. (4) and (5) respectively) can be simplified by
looking at the ratio of the momentum fluxes

Rewrite the left hand side of Eq. (4):

oðe1q1u1Þ
ot

þ
o e1q1u2

1

� �
oz

þ o

oz
qgqlcbð1� cbÞe1

q1

� �
u2

s1

� �
ðA1Þ

Take the ratio of the two momentum fluxes:

TERM ¼ q1e1u2
1

qgqlcbe1ð1�cbÞ
q1

u2
s1

ðA2Þ

Expanding the terms which are function of the flow variables, equa-
tion (A2) can be rewritten as:
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Eq. (A3) can be further reduced to:
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Define

x ¼ elql

ebqg
ðA5Þ

and Eq. (A4) can then be rewritten as:

xþ 2þ 1
x

� �
u1

us1

� �2

ðA6Þ

Differentiate the first member of Eq. (A6) and obtain:

F 0ðxÞ ¼ 1� 1
x2 ðA7Þ

It is easily shown that the function possesses a minimum when x is
equal to 1. Under this occurrence, the term of Eq. (A6) reduces to:

TERM ¼ 4
u1

us1

� �2

ðA8Þ

Since the centre of mass velocity will be typically much higher than the
slip velocity, the ratio of the momentum fluxes would then scale as:

TERM � Oð10Þ or greater ðA9Þ

Similarly, for the mixture momentum equation of gas continuous
and liquid dispersed (Eq. (5)) the ratio of the momentum fluxes is:

TERM ¼ q2e2u2
2

qgqlcde2ð1�cdÞ
q2

u2
s2

ðA10Þ

Following the line of thought outlined for the mixture momentum
equation of layer 1, the term can be expanded as follows:

ðegqgþedqlÞ
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Expanding the terms Eq. (A12) can be reduced to:
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As before, if the following assignment is imposed:

x ¼
egqg

edql
ðA13Þ

Eq. (A12) can then be cast in the following convenient form:

xþ 2þ 1
x

� �
u2

us2

� �2

ðA14Þ

Following the approach as detailed for the mixture momentum
equation for layer 1, it is easily shown that the momentum flux
involving the slip can be neglected also for the mixture momentum
equation for layer 2.
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